4 resultados para Arritmia ventricular compleja

em Aston University Research Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Monocytes are implicated in the initiation and progression of the atherosclerotic plaque contributing to plaque instability and rupture. Little is known about the role of the three phenotypically and functionally different monocyte subpopulations in determining ventricular remodelling following ST elevation myocardial infarction (STEMI). Mon1 are the ‘classical’ monocytes with inflammatory action, whilst Mon3 are considered reparative with fibroblast deposition ability. The function of the newly described Mon2 subset is yet to be fully described. Method: STEMI patients (n=196, mean age 62±13 years; 72% male) treated with percutaneous revascularization were recruited within the first 24 h post-infarction. Peripheral blood monocyte subpopulations were enumerated and characterised using flow cytometry after staining for CD14, CD16 and CCR2. Phenotypically, monocyte subpopulations are defined as: CD14++CD16-CCR2+ (Mon1), CD14++CD16+CCR2+ (Mon2) and CD14+CD16++CCR2- (Mon3) cells. Transthoracic 2D echocardiography was performed within 7 days and at 6 months post infarct to assess ventricular volumes, mass, systolic, and diastolic functions as well as strain and strain rate. Results: Using linear regression analysis higher counts for Mon1, and lower counts for Mon2 and Mon3 were significantly associated with the baseline left ventricular ejection fraction (LVEF) within 7 days post infarct (table 1). At 6 months post STEMI lower counts of Mon2 remained positively associated with a decrease in LVEF at completion of remodelling (p=0.002). Conclusion: Peripheral monocytes of all three subsets correlate with LVEF after a myocardial infarction. High counts of the inflammatory Mon1 are associated with the reduced baseline ejection fraction post infarction. After remodelling, the convalescent ejection fraction was independently predicted by monocyte subpopulation 2. As lower counts depicted negative ventricular remodelling, this suggests a possible myofibroblast deposition and angiogenesis role for the newly described intermediate monocyte subpopulation Mon2 as opposed to the previously anticipated inflammatory role.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Monocytes are implicated in the initiation and progression of theatherosclerotic plaque contributing to plaque instability and rupture. Little is knownof the role played by the 3 phenotypically and functionally different monocytesubpopulations in determining ventricular remodeling following ST elevation my-ocardial infarction (STEMI). Mon1 are "classical" inflammatory monocytes, whilstMon3 are considered reparative with fibroblast deposition ability. The function ofthe newly described Mon2 is yet to be elucidated. Method: STEMI patients (n=196, mean age 62±13 years; 72% male) treatedwith percutaneous revascularization were recruited within the first 24 hours. Pe-ripheral blood monocyte subpopulations were enumerated and characterizedusing flow cytometry after staining for CD14, CD16 and CCR2. Phenotypi-cally, monocyte subpopulations are defined as: CD14+CD16-CCR2+ (Mon1),CD14+CD16+CCR+ (Mon2) and CD14lowCD16+CCR2- (Mon3) cells. Transtho-racic 2D echocardiography was performed within 7 days and 6 months post infarctto assess ventricular volumes, mass, systolic, and diastolic functions. Results: Using linear regression analysis higher counts for Mon1, and lowercounts for Mon2 and Mon3 were significantly associated with the baseline leftventricular ejection fraction (LVEF) within seven days post infarction. At 6 monthspost STEMI lower counts of Mon2 remained positively associated with decreasedLVEF (p value= 0.002).Monocyte subsets correlation with LVEFMonocytes mean florescence Baseline left ventricular Left ventricular ejectionintensity (cells/μl) ejection fraction (%) fraction (%) at 6 months post infarctβ-value P-valueβ-value P-valueTotal Mon0.31 P<0.001 0.360.009Mon 10.019 0.020.070.62Mon 2−0.28 0.001 −0.420.002Mon 3−0.27 0.001 −0.180.21 Conclusion: Peripheral monocytes of all three subsets correlate with LVEF af-ter a myocardial infarction. High counts of the inflammatory Mon1 are associatedwith reduction in the baseline LVEF. Post remodelling, the convalescent EF wasindependently predicted by monocyte subpopulation 2. As lower counts depictednegative ventricular remodeling, this suggests a reparative role for the newly de-scribed Mon2, possibly via myofibroblast deposition and angiogenesis, in contrastto an anticipated inflammatory role.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

From Platonic and Galenic roots, the first well developed ventricular theory of brain function is due to Bishop Nemesius, fourth century C.E. Although more interested in the Christian concept of soul, St. Augustine, too addressed the question of the location of the soul, a problem that has endured in various guises to the present day. Other notable contributions to ventricular psychology are the ninth century C.E. Arabic writer, Qusta ibn Lūqā, and an early European medical text written by the twelfth century C.E. author, Nicolai the Physician. By the time of Albertus Magnus, so-called medieval cell doctrine was a well-developed model of brain function. By the sixteenth century, Vesalius no longer understands the ventricles to be imaginary cavities designed to provide a physical basis for faculty psychology but as fluid-filled spaces in the brain whose function is yet to be determined

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A successful and useful treatment for end-stage heart failure is Left ventricular assist device (LVAD). An important part - a hydrodynamically suspended impeller exposed to corrosive conditions, required to sealed hermetically into micro packages. Laser beam welded (LBW) Ti6Al4V alloy has been adopted in anti-corrosion micro packages for the impeller of a (LVAD). Thin and narrow welds were required for such medical equipment. Pulsed Nd:YAG welding was successfully adopted as sealing method for the impeller. ©2011 IEEE.